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Abstract
We study the transmission coefficient of one-dimensional barriers that are relevant to
field-emission problems. We compare, in particular, the results provided by the simple
Jeffreys–Wentzel–Kramers–Brillouin (JWKB) approximation, the continued-fraction technique
and the transfer-matrix methodology for the electronic transmission through square, triangular
and Schottky–Nordheim barriers (the Schottky–Nordheim barrier is often used in models of
field emission from flat metals). For conditions that are typical of field emission (Fermi energy
of 10 eV, work function of 4.5 eV and field strength of 5 V nm−1), it is shown that the simple
JWKB approximation must be completed by an effective prefactor Peff in order to match the
exact quantum-mechanical result. This prefactor takes typical values around 3.4 for square
barriers, 1.8 for triangular barriers and 0.84 for the Schottky–Nordheim barrier. For fields F
between 1 and 10 V nm−1 and for work functions φ between 1 and 5 eV, the prefactor Peff to
consider in the case of the Schottky–Nordheim barrier actually ranges between 0.28 and 0.98.
This study hence demonstrates that the Fowler–Nordheim equation (in its standard form that
accounts for the image interaction and that actually relies on the simple JWKB approximation)
overestimates the current emitted from a flat metal by a factor that may be of the order of 2–3
for the conditions considered in this work. The study thus confirms Forbes’s opinion that this
prefactor should be reintegrated in field-emission theories.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Field electron emission is a process by which electrons are
emitted from a material because of the application of external
fields. It finds applications in the development of flat-panel
displays, electronic microscopes, x-ray sources, etc [1]. The
process by which this emission occurs, in the cold-emission
regime in which the thermal excitation of electrons to energies
that are above the apex of the surface barrier can be neglected,
turns out to be the quantum-mechanical tunneling of electrons
through the surface barrier of the material. In this description,
the effect of the external field consists in reducing both the
height and the width of the surface barrier, which increases the
probability of tunneling and therefore the emission of current.

The first successful model for the emission achieved from
a flat metal was proposed by Fowler and Nordheim in 1928 [2].
In their original article, the surface barrier of the emitter only
accounted for the external field (thus yielding a triangular
barrier). This model was subsequently extended in order to
also account for the image interaction [3–5], for band-structure
effects [6, 7] and for various other effects [8–10]. The equation
J = at−2φ−1 F2 exp[−bvφ3/2/F] that provides the current
density J achieved from a flat metal when subject to an
external field F is referred to as the standard Fowler–Nordheim
equation, although it was actually derived by Murphy and
Good [3, 4] as an extension of the work by Fowler and
Nordheim in order to include the image interaction. In
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this expression, a = 1.541 434 × 10−6 A eV V−2, b =
6.830 890 eV−3/2 V nm−1, v and t are tabulated functions that
account for the image interaction and φ is the work function of
the emitter [11–13].

These models have in common that they apply to a flat
emitter. This is actually the reference case. Even when
the emitter has a complex three-dimensional structure, it is a
common practice to integrate the currents achieved by applying
the Fowler–Nordheim equation with the local values of the
electric field (this procedure is, however, not valid when the
characteristic dimensions of the emitter are below 10 nm) [14].
Except for the original article by Fowler and Nordheim [2],
these models also have in common that they depend essentially
on the simple Jeffreys [15]–Wentzel [16]–Kramers [17]–
Brillouin [18] (JWKB) approximation for evaluating the
electronic transmission through the surface barrier [13]. In
this approximation, the transmission coefficient is given by
T = exp[−G], where G = 2

√
2m

h̄

∫ z2

z1
[V (z) − E] dz (the

integration is performed between the classical turning points
z1 and z2 of the potential barrier V (z) at the normal energy E ;
m refers to the mass of the electron). We note that the paper
by Murphy and Good [3] actually uses on the Kemble formula
T = 1/[1 + exp(G)] for the transmission coefficient [19], but
this reduces to the JWKB approximation when T � 1 as is
typically the case in field emission. The derivation by Good
and Müller [4] relies explicitly on this JWKB approximation.

It has recently been pointed out by Forbes that an effective
prefactor Peff should be included in the transmission coefficient
T , which should therefore be expressed as T = Peff exp[−G]
(this is the Landau and Lifschitz formula) [13, 20, 21]. This
prefactor Peff is known analytically for the cases of a square
and a triangular barrier. The magnitude of this prefactor
Peff is, however, not known for the case of the Schottky–
Nordheim barrier (this barrier being that relevant to models
of field emission from a flat metal when image effects are
included). In a context in which the Fowler–Nordheim
equation is widely used by the field-emission community, the
author found it useful to apply more exact quantum-mechanical
methods in order to establish the accuracy of this JWKB
approximation when applied to field-emission problems. This
paper will essentially focus on the transmission coefficient that
characterizes these different barriers, for given values of the
external field F , of the work function φ and of the normal
energy E (i.e. the electron energy component associated with
motion in the direction normal to the emitter surface). Future
work will focus on the emission current density actually
achieved from a flat emitter.

Different techniques exist for computing the quantum-
mechanical transmission through arbitrary one-dimensional
barriers. The continued-fraction technique presented by
Vigneron and Lambin is one of them [22, 23]. Another
technique is provided by the transfer-matrix methodology,
which was developed in previous work for the study of
three-dimensional problems [24–28]. It is the objective of
this paper to compare these two techniques with the simple
JWKB approximation. This study aims at establishing the
validity of these different schemes and at determining the
prefactor Peff to use in the Landau and Lifschitz formula

Figure 1. Potential energy for the case of a square barrier (solid), a
triangular barrier (dashed) and a Schottky–Nordheim barrier
(dot-dashed). The representation corresponds to a Fermi energy EF

of 10 eV, a work function φ of 4.5 eV and a length D of 1.5 nm for
the intermediate Region II.

T = Peff exp[−G] in order for this approximation to
match the results provided by more exact quantum-mechanical
techniques. Section 2 presents the different methods used
for determining the electronic transmission through one-
dimensional barriers. In section 3, these methods are applied
successively to square barriers, to triangular barriers and finally
to the Schottky–Nordheim barrier. These numerical results
are also compared with analytical expressions when available.
This work thus settles more quantitatively the accuracy of the
JWKB approximation. It also validates the transfer-matrix
methodology as a means for getting more exact quantum-
mechanical solutions. It finally provides the correction factor
Peff to consider when applying the Landau and Lifschitz
formula T = Peff exp[−G] to field-emission problems.

2. Presentation of different methods for determining
numerically the electronic transmission through
arbitrary one-dimensional barriers

The problems we consider consist typically of three regions:
(i) Region I (z � 0), in which the potential energy has
a constant value of VI, (ii) Region II (0 � z � D),
in which the potential energy has an arbitrary dependence
V (z) and (iii) Region III (z � D), in which the potential
energy has a constant value of VIII. Region I corresponds
typically to the region that provides the electrons, while
Region III corresponds to the region in which the electrons
are transmitted. The electron energy E and the potential
energies VI, V (z) and VIII must be defined with respect to the
same reference, whose particular choice is arbitrary and of no
significance since we always deal with differences between
these different quantities. The usual convention in field-
emission theories consists in measuring the energies relative
to the bottom of the potential-energy well that represents the
emitter. The different barriers considered in this work are
depicted in figure 1.
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For field-emission problems, we consider that the cathode
is subject to an electric field F (we take the field-
emission convention that positive values of F correspond to
conventional fields that are applied towards the cathode). If D
is the length of the intermediate Region II, we actually consider
that a bias Vext = F D is established across this region. We can
then take VI = 0 in Region I, V (z) = EF + φ − eFz − e2

16πε0z
in Region II and VIII = EF + φ − eVext in Region III (e refers
to the absolute value of the charge of the electron, ε0 is the
electric constant, EF is the Fermi energy of the metal and φ is
the work function). For typical metals, we have EF = 10 eV
and φ =4.5 eV.

In order to get the current emitted by the metal, one
would need to consider the full set of possible energies,
both normal and parallel to the emitter surface. In this
paper, one will restrict our attention to particular values of
the normal energy E , typically values close to the Fermi
energy EF. Within the simple Jeffreys–Wentzel–Kramers–
Brillouin (JWKB) approximation [15–18], the ‘transmission
coefficient’ of the barrier in Region II is given by TJWKB =
exp[−G], where G = 2

√
2m

h̄

∫ z2

z1
[V (z) − E] dz. The points

z1 and z2 that limit the range of integration correspond to the
classical turning points of the barrier at the energy E (we have
actually V (z1) = E and V (z2) = E , with z1 < z2). This
coefficient actually relates the current densities in Regions I
and III: if the current density associated with an incoming
electron in Region I is Jin, the current density associated with
the transmitted electron in Region III is given by Jout =
TJWKB Jin within this approximation. This approximation does
not account for interference effects that may occur in the
barrier and that are, however, typical of quantum-mechanical
problems. Despite this limitation and probably because of its
simple analytical expression, this approximation is widely used
in applications. In particular, it appears in the model that leads
to the standard Fowler–Nordheim equation.

The continued-fraction technique presented by Vigneron
and Lambin provides a quantum-mechanical solution for
the electronic transmission through arbitrary one-dimensional
barriers [22, 23]. Within this scheme, D is split into N
segments of length �z = D/N . For our problem, one defines

bN = 2 + 2m�z2

h̄2 (VIII − E) and RN = bN
2 − i

√
1 − b2

N/4.
For k going from N to 1, one then computes recursively bk =
2 + 2m�z2

h̄2 [V (k�z) − E] and Rk−1 = bk − 1/Rk . One finally

computes b0 = 2 + 2m�z2

h̄2 (VI − E) and R−1 = b0 − 1/R0.

With R−
0 = b0

2 − i
√

1 − b2
0/4 and R+

0 = b0
2 + i

√
1 − b2

0/4,
the transmission coefficient is finally given by TFC = 1 −
|(R−

0 − R−1)/(R−1 − R+
0 )|2. This ‘transmission coefficient’

also relates the current densities in Regions I and III. Within
the approximation that d2�

dz2 � [�(z − �z) − 2�(z) + �(z +
�z)]/�z2 for the second derivative of the wavefunction [23],
this scheme provides a quantum-mechanical solution for the
electronic transmission through an arbitrary barrier V (z) at the
energy E .

The third method we consider in this paper is the transfer-
matrix technique presented in previous work for the study
of three-dimensional problems [24–28]. Let �±

I = e±ikI z

and �±
III = e±ikIIIz refer to the solutions of Schrödinger’s

equation in Regions I and III (kI =
√

2m
h̄2 (E − VI) and

kIII =
√

2m
h̄2 (E − VIII)). This methodology provides scattering

solutions of the form �+ z�0= �+
I + S−+�−

I
z�D= S++�+

III,
where S−+ and S++ are the coefficients of, respectively, the
reflected and transmitted states for an incident state �+

I in
Region I. The way these solutions are established for a one-
dimensional barrier is presented with details in the appendix.
The ‘transmission coefficient’ of the potential barrier in Region
II is then given by TTM = kIII

kI
|S++|2. This result relates as

previously the current densities associated with the incident
and transmitted states in, respectively, Regions I and III. In
contrast, the factor |S++|2 relates the probability densities
associated with these incident and transmitted states. Within
the approximation that the potential energy V (z) varies in steps
in Region II (see the appendix), this methodology provides
the exact quantum-mechanical result for the transmission
coefficient T .

3. Application to square barriers, to triangular
barriers and to the Schottky–Nordheim barrier

We compare in this section the JWKB approximation,
the continued-fraction technique and the transfer-matrix
methodology by considering the results they provide for square
barriers, for triangular barriers and finally for the Schottky–
Nordheim barrier (this last barrier being that relevant to models
of field emission from a flat metal).

3.1. Application to square barriers

In order to compare the results provided by these three
techniques with an exact analytical solution, we first consider
the case of a square barrier. We take VI = VIII = 0 eV
in Regions I and III. We assume that the barrier in Region II
(0 � z � D) has a height V of 14.5 eV and that the energy E
of the incident electron is 10 eV. These values aim at keeping
consistent with the Fermi energy EF of 10 eV and with the
work function φ of 4.5 eV considered later in this paper as
representative of typical metals.

For this situation in which E < V , the ‘transmission
coefficient’ is given analytically by

TSB = kIII

kI

× 4

(1 + kIII
kI

)2 + [(1 + kIII
kI

)2 + ( K
kI

− kIII
K )2] sinh2(K D)

,

(1)

where K =
√

2m
h̄2 (V − E). The prefactor kIII

kI
makes this

transmission coefficient apply to the current densities in
Regions I and III (we have as previously Jout = TSB Jin, where
Jin is the current density associated with the incident electron
in Region I and Jout is the current density associated with the
transmitted electron in Region III).

Figure 2 compares the coefficient transmission T achieved
when the energy of the electron ranges from EF −3 eV to EF +

3
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Figure 2. Transmission coefficient T for a square barrier of height V = 14.5 eV and of length D = 1 nm (left) and 1.5 nm (right). T is
computed from its analytical expression (solid), the transfer-matrix technique (dashed), the continued-fraction technique (dot-dashed) and the
simple JWKB approximation (dotted). The reference EF for the energy of the electrons is 10 eV.

3 eV (EF = 10 eV). The figure compares the results achieved
for a barrier thickness D of 1 and 1.5 nm. T is calculated
from its analytical expression (1), by the transfer-matrix (TM)
technique, by the continued-fraction (CF) technique and by
the simple JWKB approximation. For D = 1 nm, the TM
and CF results turn out to be in excellent agreement with each
other and with the analytical expression (1). The continued-
fraction technique presents, however, numerical instabilities
for D = 1.5 nm. These instabilities appear systematically
when T is less than 10−15. The reason comes from the fact the
transmission coefficient TFC = 1−|(R−

0 − R−1)/(R−1 − R+
0 )|2

is computed from a representation of the numbers R−1, R−
0 and

R+
0 that is limited to 52 binary digits for their mantissa (this

corresponds to a representation with 16 decimal digits). The
transfer-matrix technique on the other hand keeps stable over
the whole range of conditions. It is for that reason that we use
it as a reference when analytical results are not available.

The simple JWKB approximation T = exp[−G] turns
out to provide transmission coefficients that are systematically
smaller than the exact quantum-mechanical result by a factor
that ranges between 1.5 and 4. The effective prefactor Peff to
use in the Landau and Lifschitz formula T = Peff exp[−G] in
order to match the quantum-mechanical result is represented
in figure 3. The results correspond to a length D of 0.5, 1,
1.5 and 2 nm. The prefactor Peff that corresponds to these
square barriers is essentially independent of the length D. For
E = 10 eV, Peff takes the value of 3.424. These conclusions
are in excellent agreement with those achieved by Forbes [20].
According to Forbes, the prefactor to consider for the square
barrier considered here is given by Peff(E) = 16(E − VI)(V −
E)/(V − VI)

2 (using our notations and within the assumption
that G � 1). This result is indeed independent of the length D
of the barrier. For E = 10 eV, the expression given by Forbes
provides the value of 3.424, which is in perfect agreement with
our numerical result.

3.2. Application to triangular barriers

We now consider a triangular barrier, which is actually
the barrier considered in the original paper by Fowler and

Figure 3. Prefactor Peff to use in the Landau and Lifschitz formula
T = Peff exp[−G] in order to match the quantum-mechanical result
for the transmission through a square barrier with a height V of
14.5 eV and a length D of 0.5 nm (solid), 1 nm (dotted), 1.5 nm
(dot-dashed) and 2 nm (dotted). The reference EF for the energy of
the electrons is 10 eV.

Nordheim for modeling the emission achieved from a flat
metal [2]. We assume that a bias Vext of 1000 V is applied
across Region II (this large value aims at reducing the effects of
considering that the potential energy in Region III is constant
instead of varying with z as in Region II). The slope of the
triangular barrier is determined by the field F that characterizes
Region II and we have accordingly D = Vext/F for the length
of this region. We take as previously EF = 10 eV and
φ = 4.5 eV. We then define VI = 0, V (z) = EF +φ−eFz and
VIII = EF + φ − eVext for the potential energy in respectively
Region I, II and III. The energy E for the electrons is given by
E = EF, which corresponds to the Fermi level of Region I.

Figure 4 represents the transmission coefficient T for a
triangular barrier, when the field F is 5 and 10 V nm−1 (these
values are typical in field electron emission). The figure
compares the results achieved by the TM methodology, the CF

4
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Figure 4. Transmission coefficient T for a triangular barrier corresponding to a field F of 5 V nm−1 (left) and 10 V nm−1 (right). The Fermi
level of the metal in Region I is taken as reference for the normal energy E of the electrons. T is computed from the transfer-matrix technique
(solid), the continued-fraction technique (dashed), the simple JWKB approximation T = exp[−G] (dot-dashed) and the Landau and Lifschitz
formula T = Peff exp[−G] (dotted), where Peff = 1.839 (left) and Peff = 1.820 (right). The calculations correspond to a Fermi energy of
10 eV and a work function of 4.5 eV.

technique, the simple JWKB approximation T = exp[−G]
and the Landau and Lifschitz formula T = Peff exp[−G],
where Peff is fixed by the value required in order to match the
TM result for an electron in Region I with normal energy E
equal to the Fermi energy EF (Peff = 1.839 for F = 5 V nm−1

and Peff = 1.820 for F = 10 V nm−1). These results
demonstrate that the JWKB result is smaller than the quantum-
mechanical result by a typical factor of 1.8 for an electron with
E = EF. The approximation that consists in evaluating the
transmission coefficient by the formula T = Peff exp[−G],
where Peff is determined for an electron with E = EF, actually
holds with a good accuracy for energies that do not exceed the
Fermi energy by more than 1 eV.

Figure 5 represents the prefactor Peff to use in the Landau
and Lifschitz formula T = Peff exp[−G] in order to match the
quantum-mechanical result. Peff is given as a function of the
normal energy E and for different values of the electric field
F . The prefactor Peff turns out to depend significantly on the
electric field F , especially for energies that are closer to the
apex of the barrier. The values actually range from 0.9 to 2.0
for the conditions considered. It was established by Fowler
and Nordheim [2] that in conditions where G � 1, Peff should
be given by the square root of the value achieved for a square
barrier, i.e. Peff(E) = 4

√
(E − VI)(VI + EF + φ − E)/(EF +

φ) in our notations. For electrons with E = EF (VI = 0),
this relation indeed provides a value of 1.850, which is in good
agreement with the value of 1.848 obtained for F = 1 V nm−1.
For higher fields, we deviate from the condition G � 1 for
which the previous relation holds. For F = 10 V nm−1, we
get a prefactor Peff of 1.820, which is smaller (by 1.6%) than
the value predicted by this analytical expression.

3.3. Application to the Schottky–Nordheim barrier

The barrier that is directly relevant to field-emission problems
is the Schottky–Nordheim barrier V (z) = EF + φ −
eFz − 1

16πε0

e2

z , in which the last term accounts for the

Figure 5. Prefactor Peff to use in the Landau and Lifschitz formula
T = Peff exp[−G] in order to match the quantum-mechanical result
for the transmission through a triangular barrier corresponding to a
field F that goes from 1 to 10 V nm−1 (downwards, by increments of
1 V nm−1). The Fermi level of the metal in Region I is taken as
reference for the normal energy E of the electrons. The calculations
correspond to a Fermi energy of 10 eV and a work function of 4.5 eV.

image interaction that applies to electrons in Region II. This
expression tends to −∞ when z → 0 and the transmission
coefficient T actually fails to converge (for physical reasons)
if V (z) is not cut. We therefore prevented V (z) from dropping
below the reference potential VI of the metal in Region I. This
is certainly the most reasonable thing to do in order to model
the field-emission barrier and it corresponds indeed to the
prescriptions of Murphy and Good [3] and Modinos [11] for
this same issue. The way the potential energy in the field region
actually connects to that in the metal is probably a delicate
issue. Its impact on the field-emission currents is, however,
not expected to be significant.

Figure 6 represents the transmission coefficient of the
Schottky–Nordheim barrier for a field F of 5 and 10 V nm−1.

5
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Figure 6. Transmission coefficient T for a Schottky–Nordheim barrier corresponding to a field F of 5 V nm−1 (left) and 10 V nm−1 (right).
The Fermi level of the metal in Region I is taken as reference for the normal energy E of the electrons. T is computed from the
transfer-matrix technique (solid), the continued-fraction technique (dashed), the simple JWKB approximation T = exp[−G] (dot-dashed) and
the Landau and Lifschitz formula T = Peff exp[−G] (dotted), where Peff = 0.843 (left) and Peff = 0.631 (right). The figure corresponding to
F = 10 V nm−1 also includes the result achieved using the Fröman and Fröman formula T = P exp[−G]/{1 + P exp[−G]} (solid, as
indicated), where P = 0.721. The calculations correspond to a Fermi energy of 10 eV and a work function of 4.5 eV.

We compare the same methods as for the triangular barrier.
The results achieved by the transfer-matrix technique and
the continued-fraction technique turn out to be in perfect
agreement with each other. The JWKB approximation
provides a reasonable estimation for the quantum-mechanical
result that corresponds to a field F of 5 V nm−1 (the prefactor
Peff to use in the Landau and Lifschitz formula T =
Peff exp[−G] is 0.843 for an electron with E = EF and
this formula gives a good account of the quantum-mechanical
result for neighboring values of the energy when we keep this
value of Peff). For the field F of 10 V nm−1, the results
provided by the JWKB approximation and the Landau and
Lifschitz formula do not follow the quantum-mechanical result
(the prefactor Peff to use in the Landau and Lifschitz formula
T = Peff exp[−G] is 0.631 for E = EF and this formula does
not account accurately for the transmission achieved for other
values of the normal energy if Peff is not adapted). The JWKB
approximation and the Landau and Lifschitz formula actually
fail because the normal energy E is sufficiently close to the
apex of the barrier. The Fröman and Fröman formula T =
P exp[−G]/{1 + P exp[−G]} is better suited, in principle, to
describe these situations in which the transmission coefficient
T is close to 1 [20, 29]. The result obtained using the Fröman
and Fröman formula with P = 0.721 is also included in
figure 6 (this value of P is that required in order to match
the transfer-matrix result for E = EF; it is different from
the effective prefactor Peff = 0.631 to use in the Landau and
Lifschitz formula). The results achieved with the Fröman and
Fröman formula are indeed closer to the exact result than those
achieved with the Landau and Lifschitz formula. They deviate,
however, immediately from the exact result as soon as the
energy changes from the value for which the prefactor P is
calculated.

Since the JWKB approximation is so widely used,
even at the level of fundamental theories relevant to field
emission [4, 3], it is useful to represent the correction
factor Peff to consider in the Landau and Lifschitz formula

Figure 7. Prefactor Peff to use in the Landau and Lifschitz formula
T = Peff exp[−G] in order to match the quantum-mechanical result
for the transmission through a Schottky–Nordheim barrier
corresponding to a field F that goes from 1 to 10 V nm−1

(downwards, by increments of 1 V nm−1). The Fermi level of the
metal in Region I is taken as reference for the normal energy E of the
electrons. The calculations correspond to a Fermi energy of 10 eV
and a work function of 4.5 eV.

T = Peff exp[−G] in order to match the exact quantum-
mechanical result. This is done in figure 7, where we
represented the prefactor Peff to consider in order to get this
exact result. The results are presented as a function of the
energy E , for different values of the electric field F . The
different curves show an inflection at the critical field Fcrit =
4πε0φ

2

e3 for which the apex of the barrier corresponds to the
Fermi level of the metal in Region I (this inflection also appears
for the prefactor P that is relevant to the Fröman and Fröman
formula). For fields F that are higher than this critical value,
the electrons at the Fermi level of the metal can actually escape
to the vacuum by ballistic motion over the barrier. A realistic

6
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Figure 8. Prefactor Peff to use in the Landau and Lifschitz formula T = Peff exp[−G] in order to match the quantum-mechanical result for the
transmission through a Schottky–Nordheim barrier when the energy of the electrons corresponds to the Fermi level of the metal. The results
are represented as a function of the field F and work function φ. The representation is restricted to fields F that keep below Fcrit = 4πε0φ2

e3 .
The calculations correspond to a Fermi energy of 10 eV.

Table 1. Coefficients ai j of the polynomial adjustment Peff = ∑6
i=0

∑5
j=0 ai j X i Y j for the effective prefactor Peff to use in the Landau and

Lifschitz formula T = Peff exp[−G] for the transmission through a Schottky–Nordheim barrier. In this expression, X = F − 1.7 with F the
external field in V nm−1 and Y = φ − 4.9 with φ the work function in eV. This expression is restricted to F <

4πε0φ2

e3 ,
1 V nm−1 � F � 10 V nm−1 and 3 eV � φ � 5 eV.

ai j j = 0 j = 1 j = 2 j = 3 j = 4 j = 5

i = 0 9.600 74 × 10−1 1.432 71 × 10−1 −1.113 97 × 10−2 −7.261 57 × 10−3 −5.431 73 × 10−3 −1.34112 × 10−3

i = 1 −1.375 16 × 10−2 4.56818 × 10−3 2.991 42 × 10−4 2.324 42 × 10−3 −8.739 25 × 10−5 −4.623 23 × 10−4

i = 2 −2.687 18 × 10−4 1.653 58 × 10−3 1.054 99 × 10−2 2.802 02 × 10−2 2.141 83 × 10−2 4.869 67 × 10−3

i = 3 −1.486 93 × 10−4 −8.513 43 × 10−4 −6.353 84 × 10−3 −1.688 41 × 10−2 −1.006 88 × 10−2 −1.461 63 × 10−3

i = 4 7.255 32 × 10−5 1.084 26 × 10−4 1.052 75 × 10−3 3.014 34 × 10−3 9.569 29 × 10−4 −7.639 32 × 10−5

i = 5 −1.456 05 × 10−5 9.632 13 × 10−6 −6.266 99 × 10−5 −1.926 09 × 10−4 3.814 86 × 10−5 3.430 46 × 10−5

i = 6 7.573 64 × 10−7 −1.249 26 × 10−6 1.093 99 × 10−6 3.655 80 × 10−6 −4.604 76 × 10−6 −1.208 45 × 10−6

metal would not sustain this regime and the conditions that are
relevant to practical problems correspond to F < Fcrit. In this
range of field values, Peff ranges between 0.283 and 1.469 for
the conditions considered. These values are smaller than those
corresponding to the triangular barrier. They are indicative of
the accuracy one can expect from field-emission models that
rely on the simple JWKB approximation.

The results presented so far correspond to a work function
φ of 4.5 eV for the metal in Region I. In figure 8, we
represented the prefactor Peff to consider in the Landau and
Lifschitz formula when we let the work function take values
between 1 and 5 eV. The representation is restricted to fields
F that keep below Fcrit = 4πε0φ

2

e3 . These Peff values are
those to consider for electrons with E = EF in order get
the exact quantum-mechanical result for their transmission
T = Peff exp[−G] through the surface barrier. The normal
energy at which these Peff values are calculated corresponds to
that usually considered in field-emission theories. Within the
approximation that the same Peff could be used for the different
energies that contribute to the field-emission current, figure 8
would actually represent the correction factor to consider in
order to get a more exact emission current (the standard
Fowler–Nordheim equation relies indeed on the simple JWKB
approximation; if JFN is the current density predicted by this
equation, Peff JFN would represent a better approximation for
this current density). As demonstrated in this paper, Peff,
however, depends on the energy E and further work will be
necessary to determine the correction factor to consider with
the Fowler–Nordheim equation. For the conditions considered

in figure 8, Peff ranges between 0.283 and 0.984. It thus shows
that the currents predicted by models that rely on the simple
JWKB approximation overestimate the currents one would
obtain from a flat metal by a factor that can reach values of
the order of 2–3 for fields F that are close to the critical value
Fcrit. This issue will be addressed in more detail in future work.

Before concluding this work, we provide a polynomial
adjustment for the data represented in figure 8. The effective
prefactor Peff to use in the Landau and Lifschitz formula T =
Peff exp[−G] can be well represented by the best-fit expression
Peff = ∑6

i=0

∑5
j=0 ai j X i Y j , where X = F − 1.7 with F the

external field in V nm−1 and Y = φ − 4.9 with φ the work
function in eV. The coefficients ai j of this adjustment are given
in table 1. This expression applies for external fields F that
keep below Fcrit = 4πε0φ

2

e3 . It is subject to the restrictions
1 V nm−1 � F � 10 V nm−1 and 3 eV � φ � 5 eV.
For this range of parameters, this best-fit expression of the
results provided by the TM methodology is characterized by
a maximum absolute error of 2.2 × 10−3 and by a mean error
of 2.1 × 10−4. The reader can contact the author to obtain
polynomial expressions that cover a wider range of parameters
or to obtain the TM routines used for these calculations.

4. Conclusion

This paper addressed the quantum-mechanical calculations of
the electronic transmission through one-dimensional barriers
that are relevant to field-emission problems. We compared

7
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in particular the results provided by the simple JWKB
approximation, the continued-fraction technique and the
transfer-matrix methodology for the case of square, triangular
and Schottky–Nordheim barriers. The study confirmed that
the simple JWKB approximation must be completed by an
effective prefactor Peff (thus yielding the Landau and Lifschitz
expression T = Peff exp[−G] for the transmission coefficient)
in order to match the exact quantum-mechanical result. For
conditions that are typical of field emission (Fermi energy of
10 eV, work function of 4.5 eV and external field of 5 V nm−1

for the triangular and Schottky–Nordheim barriers), we have
typically Peff � 3.4 for square barriers, Peff � 1.8 for
triangular barriers and Peff � 0.84 for the Schottky–Nordheim
barrier (these values are relevant to electrons with a normal
energy equal to the Fermi energy). With fields F that range
between 1 and 10 V nm−1, Peff actually takes values between
0.91 and 0.63 for the Schottky–Nordheim barrier. If we allow
the work function φ to take values between 1 and 5 eV, Peff

then ranges between 0.28 and 0.98. As observed by Forbes, the
prefactor Peff is smaller for ‘smooth’ (ideal) barriers than for
‘sharp’ (nonideal) barriers [13, 20]. For a given type of barrier
and as long as F does not exceed the critical field Fcrit that
cancels the surface barrier for the normal energy E considered,
we observe that Peff decreases with the normal energy E of
the electrons and with the strength of the field F . It increases
with the work function φ. The smaller values achieved for
Peff actually correspond to the conditions for which T � 0.5,
which corresponds to F � Fcrit. These results are important in
the context of field emission since applications will actually
tend to these conditions (they correspond indeed to higher
emissions of current). The prediction of these currents often
relies on the Fowler–Nordheim equation, which depends in
turn on the JWKB approximation. This study, however, shows
that this approximation deviates from the exact quantum-
mechanical result by a factor Peff that can be as small as 0.28
for the conditions considered. The Fowler–Nordheim equation
thus overestimates the current achieved from a flat metal by a
factor that can reach values of the order of 2–3 for fields F that
are close to their critical value. This may affect any analysis
of field-emission data that is based on the Fowler–Nordheim
equation. This issue will be addressed in more detail in future
work.
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Appendix. The transfer-matrix methodology for the
electronic transmission through arbitrary
one-dimensional barriers

Let VI and VIII refer to the constant values of the potential
energy in Region I (z � 0) and Region III (z � D). The
intermediate Region II (0 � z � D) is characterized by an

arbitrary potential energy V (z) and we seek to determine the
transmission of electrons with an energy E through this barrier.

The boundary states in Regions I and III are given,
respectively, by �±

I = e±ikI z and �±
III = e±ikIII z , where kI =√

2m
h̄2 (E − VI) and kIII =

√
2m
h̄2 (E − VIII). The transfer-matrix

methodology actually provides scattering solutions of the form

�+ z�0= �+
I + S−+�−

I
z�D= S++�+

III, (A.1)

�− z�0= S−−�+
I

z�D= �−
III + S+−�+

III, (A.2)

which correspond to incident states in, respectively, Regions I
and Region III. The first solution, equation (A.1), is actually
that required in order to compute the transmission coefficients
considered in this paper. The presentation will therefore focus
on the establishment of this solution only.

The procedure for getting a scattering solution of the
form (A.1) actually consists in establishing an intermediate
solution

�
z�0= AI�

+
I + BI�

−
I

z�D= �+
III, (A.3)

which corresponds to an outgoing state �+
III in Region III. In

order to determine the coefficients AI and BI, one needs to
propagate the values of �(z) and d�(z)

dz from z = D, where
these values are perfectly defined, to z = 0. This is done by
assuming that the potential energy V (z) in Region II varies
in steps between z = 0 and D. If we take N steps of length
�x = D/N and define zl = l�z, we actually assume that
the potential energy takes the constant value Vl = [V (zl−1) +
V (zl)]/2 in each step zl−1 � z � zl , where l = 1, . . . , N .

The wavefunction �(z) and its derivative d�(z)
dz take then

in each step the analytical expressions

�(z) = Aleikl z + Ble−ikl z, (A.4)

d�(z)

dz
= ikl(Aleikl z − Ble−ikl z), (A.5)

where kl =
√

2m
h̄2 (E − Vl) (to keep concise, we allow at this

point kl to be imaginary if E < Vl). If the values of �(zl) and
d�(zl)

dz are known, one has

Al = 1

2
e−ikl zl

[

�(zl) + 1

ikl

d�(zl)

dz

]

, (A.6)

Bl = 1

2
eikl zl

[

�(zl) − 1

ikl

d�(zl)

dz

]

, (A.7)

which enables �(zl−1) and d�(zl−1)

dz to be calculated through
equations (A.4) and (A.5).

To implement the algorithm, one can define a vector Xl

whose first component X1
l contains the numerical value of

�(zl) and whose second component X2
l contains the derivative

d�(zl)

dz . The full procedure consists then in defining X1
N = eikIII D

and X2
N = ikIIIeikIII D. The propagation from z = D to 0 is

achieved by applying for l = N, . . . , 1 the relation
(

X1
l−1

X2
l−1

)

=
(

cos(kl�z) − sin(kl�z)/kl

kl sin(kl�z) cos(kl�z)

) (
X1

l

X2
l

)

,

(A.8)

8
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when E > Vl (kl =
√

2m
h̄2 (E − Vl)), the relation

(
X1

l−1

X2
l−1

)

=
(

cosh(Kl�z) − sinh(Kl�z)/Kl

−Kl sinh(Kl�z) cosh(Kl�z)

)

×
(

X1
l

X2
l

)

, (A.9)

when E < Vl (Kl =
√

2m
h̄2 (Vl − E)), or the relation

(
X1

l−1

X2
l−1

)

=
(

1 −�z
0 1

) (
X1

l

X2
l

)

, (A.10)

when E = Vl . We have finally that

AI = 1

2

[

X1
0 + 1

ikI
X2

0

]

, (A.11)

BI = 1

2

[

X1
0 − 1

ikI
X2

0

]

, (A.12)

which enables S++ and S−+ to be calculated from S++ = 1/AI

and S−+ = BI/AI.
The ‘transmission coefficient’ of the potential barrier V (z)

at the energy E is finally given by

T = kIII

kI
|S++|2. (A.13)

This transmission coefficient T relates the current density Jin,
which is associated with the incident state �+

I in Region I, to
the current density Jout = T Jin, which is associated with the
transmitted state S++�+

III in Region III.
This procedure provides the exact quantum-mechanical

result for the electronic transmission through a barrier that
varies in steps in the region 0 � z � D. The accuracy of
this approximation can be controlled by letting �z → 0. For
three-dimensional problems, it is necessary to apply the layer-
addition algorithm presented by Pendry [30] in order to prevent
the occurrence of numerical instabilities. This is explained

in detail in [31]. The adaptation of the techniques presented
in this appendix to the three-dimensional case can be found
in [25–28].
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